Practice 1,2,3,4 Answers:
Practice 1:
1 = A(x+2) + B(x+1)
1 = (A+B)x + 2A + B
Compare Co-efficients. A+B = 0
2A+B=1
Therefore: A = 1; B = -1
1 1
------ - ------
(x+1) (x+2)
b) Simple:
9x+9 9(x+1) 9
--------------- = ----------------- = --------
(x+1)(x-2) (x+1)(x-2) (x-2)
c) 3x+5 = A(x+2)(x+3) + B(x+1)(x+3) + C(x+1)(x+2)
Sub x = -1
2 = 2A
A = 1
Sub x = -2, -1 = -B, B = 1
Sub x = -3, -4 = 2C, C = -2
Therefore : 1 1 2
------------- + ------------- - ------------
(x+1) (x+2) (x+3)
Practice 2 :
1 = Ax(x-1) + B(x-1) + Cx^2 OR 1=(Ax+B)(x-1)+Cx^2
1 = (A+C)x^2 + (B-A)x -B OR x=1, C=1
Compare Coefficients OR x=0, B=-1
B=-1 OR x=-1, A = -1
A =-1
C = 1
A question :
x^2
------------------
9-x^2
Long divide to give : -1 + 9/9-x^2
= -1 + 9/(3+x)(3-x)
9 = A(3-x) + B(3+x)
x=3 , B=1.5
x=-3, A=1.5
-1 + 3/(6-2x) + 3/(6+2x)
NOTE: ALWAYS FACTORISE, A NON FACTORISED POLYNOMIAL WILL NOT WORK. have fun in a loop.
No comments:
Post a Comment