LESSON 1
Addition of Case 7 and 8
Case 7
y=3e^x
y=-e^x
y=e^0 (This is not exponential)
y=3e^x + 4
y= -e^x -4
y=e^-x
y = | x |
if x>0, y=x
if x<0, y=-x
if x=0, y=0
Case 8
y=3e^x + 4
y= -e^x -4
y=e^-x
y = | x |
if x>0, y=x
if x<0, y=-x
if x=0, y=0
Case 8
y= 3lgx
y= -lgx (Reflection about the y-axis)
y= lnx
y= 3lgx + 4
y= -lgx - 4
y= log2 x
Case 2a
y= |-3/4x|
or
y=abs (-3/4 x)
y=|3/4x|
or
y=abs (3/4 x)
Hint: For EOY Mr Johari can convert normal graph problems to a trigonometry problem or add in different topics
Case 1: y = -f(x)
this would be a reflection about the x-axis
Case 2: y = f(x) + c
this would be a vertical shift (moving up and down the graph)
Case 3: y = f(-x)
this would be a reflection about the y-axis
case 4: y = absolute f(x)
when x > 0 , y = f(x)
when x < 0 , y = -f(x)
LESSON 2
LESSON 2
Prove that
1 1
_______ + _________ = 1
log a ab log b ab
1 1
_______ + _________ = 1
log a ab log b ab
Answer (Courtesy of Justin) :
log a a log b b
_______ + _________ = log ab a (change to base a )+ log ab b = log ab ab = 1
log a ab log b ab
No comments:
Post a Comment